Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 30, 2026
-
Free, publicly-accessible full text available March 10, 2026
-
The spatial and temporal patterns of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cases and COVID-19 deaths in the United States are poorly understood. We show that variations in the cumulative reported cases and deaths by county, state, and date exemplify Taylor’s law of fluctuation scaling. Specifically, on day 1 of each month from April 2020 through June 2021, each state’s variance (across its counties) of cases is nearly proportional to its squared mean of cases. COVID-19 deaths behave similarly. The lower 99% of counts of cases and deaths across all counties are approximately lognormally distributed. Unexpectedly, the largest 1% of counts are approximately Pareto distributed, with a tail index that implies a finite mean and an infinite variance. We explain why the counts across the entire distribution conform to Taylor’s law with exponent two using models and mathematics. The finding of infinite variance has practical consequences. Local jurisdictions (counties, states, and countries) that are planning for prevention and care of largely unvaccinated populations should anticipate the rare but extremely high counts of cases and deaths that occur in distributions with infinite variance. Jurisdictions should prepare collaborative responses across boundaries, because extremely high local counts of cases and deaths may vary beyond the resources of any local jurisdiction.more » « less
-
We consider the multiparameter random simplicial complex as a higher dimensional extension of the classical Erdős–Rényi graph. We investigate appearance of “unusual” topological structures in the complex from the point of view of large deviations. We first study upper tail large deviation probabilities for subcomplex counts, deriving the order of magnitude of such probabilities at the logarithmic scale precision. The obtained results are then applied to analyze large deviations for the number of simplices of the multiparameter simplicial complexes. Finally, these results are also used to deduce large deviation estimates for Betti numbers of the complex in the critical dimension.more » « less
-
null (Ed.)Pillai & Meng (Pillai & Meng 2016 Ann. Stat. 44 , 2089–2097; p. 2091) speculated that ‘the dependence among [random variables, rvs] can be overwhelmed by the heaviness of their marginal tails ·· ·’. We give examples of statistical models that support this speculation. While under natural conditions the sample correlation of regularly varying (RV) rvs converges to a generally random limit, this limit is zero when the rvs are the reciprocals of powers greater than one of arbitrarily (but imperfectly) positively or negatively correlated normals. Surprisingly, the sample correlation of these RV rvs multiplied by the sample size has a limiting distribution on the negative half-line. We show that the asymptotic scaling of Taylor’s Law (a power-law variance function) for RV rvs is, up to a constant, the same for independent and identically distributed observations as for reciprocals of powers greater than one of arbitrarily (but imperfectly) positively correlated normals, whether those powers are the same or different. The correlations and heterogeneity do not affect the asymptotic scaling. We analyse the sample kurtosis of heavy-tailed data similarly. We show that the least-squares estimator of the slope in a linear model with heavy-tailed predictor and noise unexpectedly converges much faster than when they have finite variances.more » « less
An official website of the United States government
